
Virtualizing Disk Performance

Tim Kaldewey, Theodore M. Wong†, Richard Golding†, Anna Povzner, Scott Brandt, Carlos Maltzahn
Computer Science Department, University of California, Santa Cruz

†IBM Almaden Research Center
{kalt, tmwong, golding, apovzner, scott, carlosm}@cs.ucsc.edu

Abstract

Large- and small-scale storage systems frequently serve
a mixture of workloads, an increasing number of which
require some form of performance guarantee. Providing
guaranteed disk performance—the equivalent of a “vir-
tual disk”—is challenging because disk requests are non-
preemptible and their execution times are stateful, partially
non-deterministic, and can vary by orders of magnitude.
Guaranteeing throughput, the standard measure of disk per-
formance, requires worst-case I/O time assumptions orders
of magnitude greater than average I/O times, with corre-
spondingly low performance and poor control of the re-
source allocation. We show that disk time utilization—
analogous to CPU utilization in CPU scheduling and the
only fully provisionable aspect of disk performance—yields
greater control, more efficient use of disk resources, and
better isolation between request streams than bandwidth or
I/O rate when used as the basis for disk reservation and
scheduling.

1 Introduction

Significant research has been conducted on manag-
ing and guaranteeing CPU performance. Although many
applications—e.g., multimedia, transaction processing,
real-time data capture, and virtual machines—require I/O
performance guarantees, relatively little successful research
has been conducted on guaranteeing storage performance
for mixed workloads.

As traditional real-time applications such as multime-
dia become ubiquitous, managing storage performance is
critical for storage systems concurrently executing a mix
of workloads. In small dedicated devices (e.g., an iPod),
performance can be managed via offline or design-time re-
source provisioning. For other devices, including desktop
machines and, especially, large shared storage servers, some
other mechanism is needed.

Our goal is to provide a "virtual disk" in a shared storage
system: applications should be able to reserve disk perfor-
mance and the system should guarantee that performance,

0 10 20 30

Time (sec)

0

5

10

15

20

P
ro

gr
es

s 
(d

is
k-

se
c)

reserved A (70%, seq)
stream A
reserved B (30%, rand)
stream B

Figure 1: Progress of two I/O streams; one random and one se-
quential. Each stream uses its own virtual disk, both of which are
hosted by a single physical disk. The virtual disk of the sequential
stream has reserved 70% of the physical disk time and the virtual
disk of the random one has reserved 30%. Other combinations
(not shown) are similar.

as shown in Figure 1. Doing so requires a uniform rep-
resentation of disk performance that can be guaranteed re-
gardless of what other applications are accessing the disk or
how they behave.

Disk throughput has traditionally been used to describe
storage system performance. Although throughput is a nat-
ural way to represent application requirements, guarantee-
ing throughput is difficult for four reasons. First, disk
requests are stateful: the time required for a request de-
pends heavily upon the location of the immediately preced-
ing request. Second, disk request times are partially non-
deterministic: disks are intelligent devices that performbad
block remapping, re-calibration, and other operations that
can affect I/O times in ways that are impossible to deter-
mine a priori. Third, disk requests are non-preemptible:
once issued to the disk, a request must be allowed to finish.
Fourth, and perhaps most significant, the impact of the pre-
vious three is made critical by the huge difference between
best- and worst-case request times: a best-case request can
take a fraction of a millisecond, while a worst-case request
may take tens of milliseconds. Thus throughput depends



1 10 100 1000

Sequential run length (4 KB blocks)

10

100

1000

T
hr

ou
gh

pu
t (

IO
P

S
)

Maximum
Reservable

Figure 2: Reservable and maximum I/O rate for workloads, with
increasing amounts of sequentiality. The difference between the
two curves represents the opportunity for improved resource reser-
vation.

heavily upon application I/O behavior, which is beyond the
control of the storage system.

One potential solution to this problem is to reserve per-
formance based on worst-case request times. However,
because of the vast difference between best- and worst-
case times, less than 1% of achievable disk performance is
reservable. Figure 2 shows the opportunity cost of manag-
ing disk performance using throughput, with reservable per-
formance orders of magnitude lower than actual achievable
performance.

Providing a virtual disk and guaranteeing performance
in a shared storage system requires isolating each applica-
tion from the behavior of others. Head seeks from one re-
gion of a disk to another are the primary source of delay in
serving requests and each request stream must be correctly
charged for its seek behavior in order to avoid interfering
with the performance of other streams. Ideally, each appli-
cation should behave as though it were the only one running
on a device with fractional performance equal to its share of
the actual disk.

We show thatdisk time utilization—time spent servicing
I/O requests, analogous to CPU utilization—is the appropri-
ate basis for managing disk performance. Unlike through-
put, disk utilization is a quantity that we can actually guar-
antee without losing most of our performance. Because we
can correctly account for disk time, we can charge each
stream for the disk seeks it incurs, allowing isolation be-
tween application request streams. Finally, a virtual disk
comprising a time share of the actual disk can be requested,
feasibility can be verified (∑ reservations≤ 100%?), and
the share can be guaranteed without any assumptions about
application behavior. As shown in Figure 1 and discussed
further in §4, managing disk performance with utilization
allows a clean allocation of disk performance independent
of application behavior, exactly as desired for a virtual disk.

In fact, disk time utilization is theonly workload-

independent way of expressing and managing disk perfor-
mance1. The only thing that a disk guarantees is that it
will spend time servicing I/O requests and thus the only as-
pect of I/O performance that can be provisioned is time on
the disk. All other disk performance metrics are dependent
upon workload, data layout, and disk parameters.

For the rest of the paper we will refer to disk time utiliza-
tion simply as “utilization”. We show how to provide virtual
disks with a utilization-based disk scheduler and compare it
to a throughput-based approach.

2 Virtual disks based on utilization

We define a virtual disk in a shared storage system as a
fractional share of a disk whose performance depends only
upon its workload, its share, and the base performance of
the device. Importantly, the performance of a virtual disk
should be independent of the performance or behavior of
any other. We argue that utilization is the appropriate basis
for providing a virtual disk. Disk time is a quantity that we
can guarantee while keeping most of the efficiency of the
raw device. Within a given disk time utilization, the per-
formance of a request stream will be determined solely by
its behavior. In contrast, by guaranteeing I/O rate one can-
not exploit the increased efficiency of well-behaved (i.e., se-
quential) streams as the guaranteeble performance is con-
stant and must be based on worst-case assumptions.

When a disk is shared by multiple workloads, one work-
load can potentially degrade performance of other work-
loads. Isolation between request streams is critical; an ap-
plication running on a virtual disk should receive the same
performance regardless of the behavior of other applica-
tions accessing the same shared disk. Managing disk per-
formance in terms of utilization allows us to correctly ac-
count for the seeks incurred by each I/O stream, allowing
isolation between request streams. Finally, managing vir-
tual disks based on utilization is easy because utilizationis
additive and feasibility can be trivially verified, so the share
can be guaranteed without anya priori information about
application behavior.

The rest of this section discusses these points in more de-
tail. We also show how utilization can be used to guarantee
application performance requirements.

2.1 Measuring and guaranteeing utilization

We define utilization using the standard queuing-
theoretic model. We assume that a disk services one request
at a time and model it as a single queue/single server system.
Utilization is thus the fraction of time that the disk spends
executing I/O requests, in units ofµseconds of execution
per second. Each I/O request can be thought of as consum-
ing a certain number ofµseconds of the available execution

1"Always bear in mind that the real measure of computer performance
is time." Computer Architecture: A Quantitative Approach, p.37, by Hen-
nessy and Patterson, Morgan Kaufmann Publishers, Inc., 1990.



time. This definition is correct for single-server systems;
it requires extension to handle multiple-server queuing sys-
tems, such as RAID arrays with multiple disks operating in
parallel.

While utilization is a measure of usage over a given pe-
riod of time, the I/O scheduling algorithm needs estimates
of the “instantaneous” utilization received by different I/O
streams to determine which I/O requests to schedule and
which to delay. There are several ways to compute the esti-
mates, all of which use execution time over some short pe-
riod of recent history, possibly with age-weighting. These
estimators necessarily exhibit some lag, which must be con-
sidered in the decisions that use the estimates.

At the lowest level, the I/O scheduler decides which I/O
request to send to the disk for service in order to enforce
utilization reservations. The scheduler also has a secondary
goal of maximizing disk efficiency by minimizing disk head
movement. The scheduling decision is generally based on
three things: what requests are enqueued and can be chosen
for service; how each virtual device is doing with respect to
its reservation; and the estimated utilization needed for each
pending request. The cost of executing a request depends on
the state of the disk, including the rotational position of the
platter and the seek position of the head.

Figure 3 shows the overall flow of the I/O scheduler.
There are three major events in the lifecycle of an I/O re-
quest: scheduling; execution; and completion. The decision
to schedule one request or another depends on theaccount-
ing for different virtual devices—for example, whether a
virtual device has reached a performance limit and thus its
requests are temporarily blocked, or if it is below its reser-
vation and needs to execute additional requests.

This model raises three questions. First, the scheduler
requires an estimate of the execution time of each I/O re-
quest. How do we determine these? Second, the scheduler
needs to know the actual execution time of each I/O request.
How are these measured? Third, I/O workloads can change
abruptly. How do we avoid unstable behavior when this oc-
curs?

Before executing a request, the scheduler can only pre-
dict how long its execution will take. In our system, we
estimate the execution timee when a request is scheduled.
There are several possible ways to compute the estimate,
ranging from using a constant “safe” value, such as the
average execution time of a random I/O request, to mod-
elling the detailed behavior of the disk, as has been done
for SPTF head schedulers [15]. Detailed modelling can be
difficult, since every disk is different, and so we take a sim-
ple approach where sequential I/O requests are estimated at
a small constant value and other requests are estimated at a
safe value.

After the completion of each request, the scheduler cor-
rects its accounting based on the measured (actual) execu-
tion time. When the request completes, the scheduler com-

disk

scheduler 
accounting

Request completion
ai = min(ci-ci-1, ci-ri)

Δ = ai-ei

Request scheduling
r = release time

e = execution time 

estimate

Request execution
c = completion time

disk 
queue

incoming 
requests

completed 
request

request i

request i-1

Δ

e

add in 

correction

add in 

estimate

r e

r e

r e

r e

cr e

c a

scheduler 

state

Figure 3: Flow of I/O requests through an I/O scheduler.

putes the actual execution timea as the time between the
completion of the previous request and that of the current
requestci − ci−1, or, after an idle period, between the re-
lease and completion of the current requestci − r i .

The scheduler uses the measured execution times to
compute an estimate of the utilization recently obtained by
each virtual device. We usetoken bucketsto track how far
each virtual device has progressed with its reserved utiliza-
tion (see §3). The token bucket fills at a constant rate—the
rate at which the virtual device is supposed to utilize the
disk—and the scheduler works to keep the bucket level in a
range 0±u, whereu is the expected utilization over a mod-
erate periodp (for example, one second). For any period at
least 2p long, the scheduler will work to ensure that each
virtual device gets its proper utilization, but over short du-
rations any virtual device can get up tou ahead or behind
the long-term average.

Finally, as illustrated by the time series in Figure 11
(§4.4), a scheduler must cope with abrupt changes in the of-
fered load. Since the scheduler is, in effect, a control system
that is attempting to ensure that each virtual device’s reser-
vation is met, the scheduler must be designed to control os-
cillatory behavior and the effects of transient load changes.

2.2 Providing isolation

Isolation between virtual devices is critical. Our sys-
tem provides isolation in five ways. First, and most im-
portantly, we guarantee to each virtual device the utilization
it has reserved. Second, we account for all seeks and other
delays. Third, we charge each virtual device for the time
spent on each of its requests. Fourth, we schedule I/O re-



quests with sufficiently coarse granularity that inter-stream
seeks are minimized and the time spent on each stream’s
requests is largely due to its own intra-stream seek behav-
ior. Finally, any cost of the remaining inter-stream seeks
is randomly distributed across the active virtual disks, rep-
resenting a small relatively constant overhead on each vir-
tual disk’s performance which can be mitigated by leaving
a small fraction of disk utilization unreserved.

2.3 Admission control

The scheduling flow in Figure 3 assumes a reservation
for each virtual disk. The system must be able to prop-
erly admit or deny requests for new virtual disks or changes
in virtual disk parameters. Utilization allows for a simple
admission control decision: each disk has 100% allocat-
able utilization, and any set of reservations that sum to no
more than 100% are feasible. We note that utilization has
been used for decisions similar to admission control in other
projects, such as the short-term utilization measure in the
Minerva system [1, 2].

2.4 Translating application requirements

Although not strictly required for a virtual disk, the iso-
lation they provide allows soft performance guarantees in
terms of throughput. Each application has its own require-
ments and behavior which can be translated into a utiliza-
tion required to provide the desired performance given that
behavior. Although we do not focus on the translation in
this paper—it has been explored in other work, such as by
Borowskyet al. [2]—we discuss it briefly here.

The general approach is determined by the physics of
disk drive operation. When a disk services a sequence of
I/O requests from one application, it must first seek the head
to the proper track, possibly wait for the proper sectors to
pass under the head, and then transfer the data in the sectors
to memory buffers for transmission to the host. This leads to
a model for translating application requirements and behav-
ior into an expected utilization. We give a simple example;
others have developed more complete models [2].

Consider a multimedia application that issues runs of
strictly sequential requests: its performance depends on
how many blocks the disk services sequentially before mov-
ing the head elsewhere. That is, the time to process a se-
quence ofn consecutive block requests is approximately
t = 0.5smax+0.5p+nx, wheresmax is the worst case seek
time, p is the rotation time andx is the time to transfer
one block off of the media. (The effective average rota-
tional delay may be lower on some disks when most of
the blocks are being read on one track; this formula ig-
nores track-switching costs.) The numbern depends on
how many requests the application makes available for the
scheduler to process together, and how many of those re-
quests the scheduler actually executes sequentially before

scheduling requests from other virtual devices. The ap-
plication can know the numberba of sequential requests
it will make, but the degree of interference between ses-
sions depends on the scheduler. In practice, the scheduler
can enqueue a maximum ofbs sequential requests, depen-
dent on granularity (one second, in our scheduler). Thus
for an I/O rater, the application should reserve utilization
u = r/(0.5smax+0.5p+min(bs,ba)x).

This example focuses on I/O rate as the application’s
expectation. Other systems, such as Façade [14] and
SLEDS [6], focused on latency and, in effect, maintain la-
tency goals using a dynamic control system to adjust the
utilization given to each session.

3 Implementation

We implemented a virtual device driver using utilization
based I/O scheduling to investigate the virtual disk approach
described in §2. The driver was derived from our previous
Zygaria driver [27], which provides medium-term average
performance guarantees using I/O rate as a common metric,
which we replaced with utilization.

Zygaria is implemented as a Linux kernel module lay-
ered on top of an existing block device. It exports a set of
virtual block devices ("virtual disks"), one for each I/O re-
quest stream. The driver provides system calls for setting
lower and upper bounds (reserveand limit) on the perfor-
mance of the virtual block devices, as well as for query-
ing their parameters and performance measurements. The
system calls also perform admission control to ensure the
requested reservation is feasible.

The major difference between the old and new Zygaria
drivers is how they measure resource usage: The old driver
uses the number of I/O requests, while the new one uses
execution time measured inµseconds. Both use similar data
structures to track resource usage.

For each virtual device, the driver maintains two "token
buckets", one for the reserve and another for the limit. Both
fill at a rate equal to their fractional share of the overall
disk time. The reserve bucket represents the guaranteed (re-
served) share of disk time, while the limit caps the use of
unclaimed resources (slack). The first request in a virtual
device’s queue is assigned a deadline that is equal to the
time at which the virtual device’s reserve bucket will have
enough "time" to satisfy the request.

Based on a weighted moving average of the resource
usage of each virtual device over the last few seconds the
scheduler determines which device should get scheduled
when there is slack in the schedule. The limit bucket regu-
lates by how much a virtual device can exceed its reserva-
tion.

The scheduling algorithm determines which I/O request
to schedule next as follows. First, it eliminates any virtual
devices that are at or above their limit or that have no I/O
requests enqueued. Among the remaining virtual devices,



it does EDF scheduling: it determines which virtual device
has the earliest deadline. If there is slack in the schedule,the
scheduler selects the virtual device with the lowest usage.

When a virtual device is selected, its I/O request is sent
to the low-level device driver and the accounting for the
virtual device is updated to reflect the request. The driver
maintains a number of requests outstanding at the low-level
driver (up to 20 requests for the throughput-based version).
This allows the low-level driver to reorder requests in order
to improve head scheduling efficiency, while bounding the
lag between the decision to schedule a request for execution
and the actual execution.

Because this algorithm updates a virtual device’s ac-
counting data structures when an I/O request is scheduled,
the scheduler can only use an estimate of the request’s ex-
ecution time. The actual execution time is not known un-
til the request has completed. This is a non-issue when
scheduling using I/O rate, since each request uses exactly
one resource unit.

As shown in Figure 3, Zygaria initially decrements the
bucket level using an estimate,e, and then corrects the ac-
counting when the request completes execution. The driver
keeps track of the initial estimatee and the time that the
request was sent for execution,r. When the request com-
pletes, the actual execution timea is computed as either
the time from the completion of the previous request to
the completion of this request, or the time from schedul-
ing the request to its completion if the disk was idle when
the request was issued. The driver computes the difference
∆ = a−e and updates the accounting accordingly, issuing
more requests if the remaining resources are sufficient to
allow it.

The simplest way to estimate how long an I/O request
will take is to assume a single worst- or average-case exe-
cution time for every request. This is unsatisfactory when
an application is performing sequential I/Os: on one disk,
we found that sequential requests typically execute in less
than 10µsec, while random requests typically take around
15 msec. This implies that the scheduler should charge the
same amount of estimated execution for more than 1500 se-
quential operations as for one random operation. The algo-
rithm in Zygaria would not enqueue enough sequential I/O
requests to get good head scheduling efficiency if it treated
sequential requests the same as random ones.

Several approaches exist to estimate the execution time
of I/O requests. The Freeblock disk scheduler [15] includes
a detailed model of the disk drive in the device driver, and
uses that to generate detailed, accurate predictions. Various
machine learning techniques have been evaluated to esti-
mate storage workload behavior [24].

To minimize overhead we have chosen a simpler ap-
proach. Each request is categorized as random or sequen-
tial, based on the distance between the request’s block ad-
dress and the previous one. We use a fixed estimate for

each category, 20 msec for “random” requests (≥ 100 sec-
tors from the previous request) and 300µsec for “sequen-
tial” requests (< 100 sectors from the previous request). We
evaluate this approach in §4.3.

4 Evaluation

We compared the utilization-based version of Zygaria
with our earlier throughput-based version to evaluate their
ability to provide the performance guarantees and isolation
required for a virtual disk. A virtual disk must guarantee the
availability of the resource, independent of application be-
havior. As with a physical disk, dependencies among mul-
tiple applications affecting their storage access behavior are
beyond the control of the storage system. The first set of
experiments (§4.2) validates the argument that utilization
allows better control of performance than does throughput.
The second set of experiments (§4.3) compares the sensi-
tivity of each scheduler to the accuracy of its disk drive
model, showing that the utilization-based version works
correctly with rough models, while the throughput-based
scheduler is sensitive to errors in the model. Finally, the
third set of experiments evaluates the time-varying proper-
ties of the utilization-based scheduler (§4.4). The overhead
of the Zygaria scheduler has been evaluated previously [27]
and found to be negligible, hence scalability is not an issue.
Our results demonstrate the suitability of a utilization-based
scheduler as the basis for a virtual disk.

4.1 Experimental setup

Our experiments were conducted on an IBM x335 server
with a 2.4 GHz Xeon processor and 512 MB of main mem-
ory, running Fedora Core 5 Linux (kernel version 2.6.17).
We used an IBM Deskstar 34GXP ATA disk drive (20.5 GB,
7200 RPM, 3.5 in) for all tests; the disk has a measured
nominal (worst-case) throughput of 60IOPS. To avoid in-
terference from other tasks (e.g., operating system mainte-
nance and other applications), the disk was used as an un-
mounted raw device dedicated to the experiments. We used
the modified version of the Zygaria disk scheduling driver
described in §3 (and the original one [27] for comparison).

We used the Pharos workload generator [27] to generate
block I/O requests. Pharos produces random or sequential
I/O streams of 4 KB requests with a variety of different tem-
poral arrival patterns; we used both open-loop arrivals with
a constant interarrival time and closed-loop arrivals with
constant think time and a fixed number of outstanding re-
quests.

Utilization is reserved by virtual devices which serve
streams of I/O requests. Request streams themselves re-
ceive utilization and performance while running on virtual
devices. For brevity, in the following discussion we talk
about request streams reserving and achieving utilization.
It should be understood that wherever we refer to a request



0 10 20 30 40 50 60 70 80 90 100

Percent reservation for sequential

0

20

40

60

80

100

U
til

iz
at

io
n 

(p
er

ce
nt

)

random stream
sequential stream

(a) Utilization

0 10 20 30 40 50 60 70 80 90 100

Percent reservation for sequential

0

1000

2000

3000

4000

5000

T
hr

ou
gh

pu
t (

IO
P

S
)

random stream
sequential stream

(b) Throughput

Figure 4: Controlling performance using utilization: utilization and throughput of one random and one sequential request stream from the
utilization-based scheduler as the reservation of the sequential stream varies from 0% to 100% of available utilization (and the reservation
of the random stream varies from 100% to 0%).

stream’s reservation, we are actually referring to a request
stream whose requests are served by a virtual device with
that reservation.

4.2 Controlling performance

We first compared the utilization-based scheduler with
the earlier throughput-based scheduler to determine which
provided better control over resources. By better control,
we mean the ability to make reservations that are both ful-
fillable and that effectively determine the division of perfor-
mance. A fulfillable reservation is one that the scheduler
can actually deliver across a wide range of conditions (such
as other interfering workloads). When the system is un-
der heavy load, the reservations should determine the per-
formance of the virtual devices and not, for example, fair
sharing policies.

We conducted a simple set of experiments to evaluate
these aspects of the two schedulers. The experiments used
two virtual devices—one serving sequential requests, the
other, random requests—together reserving all reservable
resources of the disk. We varied the amount of resources
reserved for the two virtual devices and measured the re-
sulting performance (utilization or throughput) of the re-
quest streams they served, as shown in Figures 4 and 5. For
each virtual device, a workload generator sent I/O requests
as fast as possible to keep the request queues non-empty.
For the sequential stream, the generator sent 1024 sequen-
tial requests before sending a request at a new random loca-
tion. Each experimental run took 85 seconds to determine
steady-state performance for a given set of resource reser-
vations. While we repeated each experiment many times,
the differences between runs were indistinguishable.

Each pair of bars in these graphs, showing the perfor-

mance of one random and one sequential stream, represents
the result of a single experiment. Always reserving a total
of 100% of the reservable disk resources, we vary the reser-
vation of the sequential stream from 0% to 100% and of
the random stream from 100% to 0%. The ideal result for
these sets of experiments would be a diagonal split of the
bars, showing that each stream received exactly its reserved
share.

We expected that utilization would allow for good con-
trol if the scheduler could actually control utilization for a
hard disk. Figure 4(a) shows that this was the case. The
results are very nearly a perfect diagonal split, representing
nearly perfect control over the sharing of the disk perfor-
mance. The slight discrepancies at high sequential reserva-
tions occur because Linux was not able to run the workload
generator fast enough to keep the queue of sequential re-
quests from emptying, occasionally allowing the scheduler
to schedule extra requests from the other virtual device. Fig-
ure 4(b) shows the throughput that results from these allo-
cations. As expected (and desired), the sequential request
stream achieves significantly higher throughput, reflecting
both more efficient use of its reserved time and isolation
from the random request stream.

By comparison, throughput reservations are fulfillable,
but provide poor control over the division of performance
and lower overall performance. Figure 5(a) shows the re-
sults for the same experiment, but using throughput instead
of utilization. The maximum reservable throughput was de-
termined by sending a stream of random I/O requests to
the drive and measuring the rate (which is somewhat bet-
ter than the actual worst-case performance.) Each virtual
device then reserved some fraction of that nominal through-
put.

Figure 5(a) shows that each request stream received at



0 10 20 30 40 50 60 70 80 90 100

Percent reservation for sequential

0

200

400

600

800

1000

T
hr

ou
gh

pu
t (

pe
rc

en
t o

f r
es

er
va

bl
e)

random stream
sequential stream

(a) Percent of nominal throughput

0 10 20 30 40 50 60 70 80 90 100

Percent reservation for sequential

0

1000

2000

3000

4000

5000

T
hr

ou
gh

pu
t (

IO
P

S
)

random stream
sequential stream

(b) Throughput, showing sequential I/O requests per secondand I/O runs per
second

Figure 5: Controlling performance using throughput: throughput received by one random and one sequential request stream from
the throughput-based scheduler as the reservation of the sequential stream varies from 0% to 100% of the nominal throughput (and the
reservation of the random stream varies from 100% to 0%).

least the throughput it reserved. However, the sequential
stream always obtained an I/O rate higher than the reserv-
able maximum when it had at least 10% reservation, be-
cause the sequential I/O requests took so little time to exe-
cute compared to the nominal case used to define the reserv-
able I/O rate. The results are not at all like the nearly perfect
diagonal split for the utilization-based driver and demon-
strate very poor control over the sharing of the disk perfor-
mance.

0 10 20 30 40 50 60 70 80 90 100

Percent reservation for sequential

0

1000

2000

3000

4000

5000

T
hr

ou
gh

pu
t (

IO
P

S
)

random (util)
sequential (util)
random (tput)
sequential (tput)

Figure 6: Efficiency comparison: throughput received by one
random and one sequential request stream from the utilization- and
throughput-based schedulers as the reservation of the sequential
stream varies from 0% to 100% (and the reservation of the random
stream varies from 100% to 0%) of utilization or throughput (as
appropriate for the scheduler).

In practice, the throughput-based scheduler allows only a

small fraction of the I/O rate to be controlled by reservation;
the rest is determined by the scheduler’s slack management
policy. A sequential stream reserving 10% or more received
far more than its reserved throughput—more, in fact, than
the total reservable throughput. After fulfilling the reser-
vation of the virtual device serving random requests, the
scheduler was able to schedule several of the more efficient
sequential runs using slack. For sequential reservations of
30% and above, our fair-sharing slack management policy
effectively determined the performance achieved by both
devices. Increasing the sequential reservation did not result
in an increasing share of the achieved throughput. After ful-
filling the reservation of the sequential stream, our fair shar-
ing slack management policy scheduled some of the less
efficient random requests. Thus, counter-intuitively, a se-
quential stream on a virtual device that had reserved 100%
of the reservable throughput did not receive 100% of the
actual throughput.

In addition to providing better control over the divi-
sion of resources, the utilization-based scheduler provides
higher overall performance. Figure 6 compares the ob-
served throughput received by the request streams in the
preceding experiments. Under the utilization-based sched-
uler, the performance of the sequential stream approached
the maximum achievable throughput as its reservation in-
creased. Under the throughput-based scheduler, it was
capped by the reservation, which was in turn capped by the
maximum guaranteeable throughput.



0 10 20 30 40 50 60 70 80 90 100

Percent reservation for sequential

0

20

40

60

80

100

U
til

iz
at

io
n 

(p
er

ce
nt

)

random (20000 us)
sequential (20000 us)
random (5000 us)
sequential (5000 us)
random (300 us)
sequential (300 us)

(a) Utilization

0 10 20 30 40 50 60 70 80 90 100

Percent reservation for sequential

0

1000

2000

3000

4000

5000

T
hr

ou
gh

pu
t (

IO
P

S
)

random (20000 us)
sequential (20000 us)
random (5000 us)
sequential (5000 us)
random (300 us)
sequential (300 us)

(b) Throughput, with sequential (0, 0) results omitted

Figure 7: Sensitivity of the utilization-based scheduler to errors in the random I/O service time estimate. Performance received by two
request streams, one random and the other sequential, from the utilization-based scheduler with increasingly underestimated random I/O
request service time (in parentheses).

4.3 Sensitivity to model errors

Because disk requests are not preemptible, the scheduler
must use a model of the disk’s performance when mak-
ing scheduling decisions. For generality and to minimize
scheduling overhead the Zygaria schedulers avoid detailed
modeling of the underlying disk and instead use very sim-
ple models. The utilization-based scheduler’s model has
three parameters: the estimated service time for “random”
requests; the estimated service time for “sequential” re-
quests; and the policy for classifying a request as sequential
or random. The throughput-based scheduler, on the other
hand, uses the nominal (maximum reservable) I/O rate as
its model.

The results suggest that the utilization-based scheduler’s
behavior is stable over wide ranges of parameters and is
insensitive to wrong estimates in service time. On the other
hand, the throughput-based scheduler is quite sensitive to
errors in its model.

Utilization—random service time. The utilization-
based scheduler is relatively insensitive to underestimates
in the estimated random I/O service time, as shown in Fig-
ure 7. An underestimate corresponds to overestimating the
potential throughput of the disk. The graph compares esti-
mates of 20 msec (the default value), 5 msec, and 300µsec
(the default estimate for sequential requests). The results
suggest that as long as there is a significant difference be-
tween the sequential and random estimates, the scheduler
will behave correctly.

Utilization—sequential service time. Figure 8(a)
shows that each request stream received the utilization it re-
served, regardless of overestimates in the sequential request
service time. The sequential stream receives less through-

put with increasing overestimates, shown in Figure 8(b), be-
cause the scheduler dispatches fewer sequential requests at
any given time to the disk.

Throughput-based scheduler. The throughput-based
scheduler is very sensitive to errors in the estimated reserv-
able throughput. The measured throughput of the disk we
were using was 68IOPS. We ran a set of experiments in
which we overestimated the reservable throughput of the
disk by 10% (75IOPS) and 50% (102IOPS). The results in
Figure 9 show that the scheduler’s behavior varies widely.
For any overestimate in reservable throughput the random
stream does not achieve 100% of its reservation—as ex-
pected, since the disk is not capable of that many random
I/O requests per second.

4.4 Short-term behavior

The previous results confirmed that using utilization as a
metric for I/O scheduling provides better long term control
than using throughput. However, short term time-varying
behavior has to be considered as well. Here we consider
two key aspects: that the scheduler gives multiple virtual
devices their proper utilization when the workload is stable,
and that it responds properly when the workload changes.

Figure 1 (§1) shows the cumulative disk service time that
two request streams received over time. We picked one
single experiment from the set used to generate Figure 4,
where one stream reserved 70% of the disk’s utilization
and sent sequential requests, while the other reserved 30%
and sent random requests. For this experiment we sample
the achieved utilization every 500ms. After a small initial
startup transient caused by the workload generators start-
ing at slightly different times, both streams get their proper
amount of service time. This analysis of transient perfor-



0 10 20 30 40 50 60 70 80 90 100

Percent reservation for sequential

0

20

40

60

80

100

U
til

iz
at

io
n 

(p
er

ce
nt

)

random (300 us)
sequential (300 us)
random (5000 us)
sequential (5000 us)
random (20000 us)
sequential (20000 us)

(a) Utilization

0 10 20 30 40 50 60 70 80 90 100

Percent reservation for sequential

0

1000

2000

3000

4000

5000

T
hr

ou
gh

pu
t (

IO
P

S
)

random (300 us)
sequential (300 us)
random (5000 us)
sequential (5000 us)
random (20000 us)
sequential (20000 us)

(b) Throughput, with sequential (0, 0) results omitted

Figure 8: Sensitivity of the utilization-based scheduler to errors in the sequential I/O service time estimate. Performance received by two
request streams, one random and the other sequential, from the utilization-based scheduler with increasingly overestimated sequential I/O
request service time (in parentheses).

mance confirms that our approach provides more than just
statistical guarantees, fulfilling reservations as a fraction of
each disk-second.

0 10 20 30

Time (sec)

0

2000

4000

6000

8000

10000

P
ro

gr
es

s 
(#

 I/
O

s)

reserved A (70%, seq)
stream A
reserved B (30%, rand)
stream B

Figure 10: Time series of cumulative throughput received by
two request streams, one random with a 30% reservation and one
sequential with a 70% reservation.

Figure 10 shows cumulative I/Os for thesameworkload,
but using the throughput based scheduler. Accordingly, we
picked one single experiment from the set used to generate
Figure 5, with a 70% reservation for the sequential stream
and a 30% reservation for the random stream, sampling the
progress in terms of number of I/O’s also every 500ms.
Each stream achieves a much higher throughput than its
reservation because the reservable throughput is necessar-
ily based on worst-case assumptions which are inaccurate
for the sequential stream (A). After fulfilling the through-
put reservations it is up to the scheduler how to handle slack,
which does not have to be distributed according to the reser-
vations. This is a problem inherent in using a workload-

dependent metric (e.g., throughput) to reserve storage per-
formance, and is not a problem with the scheduler.

Figure 11 shows a more challenging scenario, with
three request streams becoming active at different times.
Stream 1 is active for the duration of the experiment, the
others only part of the time. Stream 2 serves sequential re-
quests, while the others serve random requests. All three
have established their reservation at the beginning of the
run. (This is a variation of an experiment used to evaluate
the throughput-based scheduler, as reported in our earlier
work [27].)

The time series shows three key effects. First, each
stream receives at least the performance reserved by its de-
vice or fair share after transients due to workload changes.
Second, when a stream begins sending requests, it briefly
receives more than its usual performance; for example,
stream 2 att = 10 sec. This occurs because the sched-
uler uses token buckets to track a stream’s recent utiliza-
tion. When a stream is inactive its bucket will accumulate
tokens (up to one second worth of its reservation), which are
then available immediately when it starts sending requests.
Finally, when a stream stops sending requests there is an-
other short transient where a stream that has been getting
less utilization will briefly get more; for example, stream
1 at t = 30 sec. This occurs because there is slack avail-
able from the stopped stream and sharing is determined by
the scheduler’s slack management policy. We used a fair
sharing policy based on a moving average over a window
of a few seconds. Both transient effects are due to using
measurements that estimate utilization based on recent be-
havior, which introduces a lag in response compared to an
oracular instantaneous measure. This is a general problem
in feedback control systems.



0 10 20 30 40 50 60 70 80 90 100

Percent reservation for sequential

0

200

400

600

800

1000

T
hr

ou
gh

pu
t (

pe
rc

en
t o

f r
es

er
va

bl
e)

random (68 IOPS)
sequential (68 IOPS)
random (75 IOPS)
sequential (75 IOPS)
random (102 IOPS)
sequential (102 IOPS)

(a) Percent of nominal throughput

0 10 20 30 40 50 60 70 80 90 100

Percent reservation for sequential

0

1000

2000

3000

4000

5000

T
hr

ou
gh

pu
t (

IO
P

S
)

random (68 IOPS)
sequential (68 IOPS)
random (75 IOPS)
sequential (75 IOPS)
random (102 IOPS)
sequential (102 IOPS)

(b) Throughput, with sequential (0, 0) results for 75 and 102IOPSomitted

Figure 9: Sensitivity of the throughput-based scheduler to errors in nominal throughput estimate. Performance received by two request
streams, one serving random and one sequential requests, from the throughput-based scheduler with increasingly overestimated nominal
throughput.

5 Related work
Storage virtualization. Storage virtualization has 2 di-
mensions: capacity and performance. Many commercial
products virtualize storage capacity [12, 9]. The virtualiza-
tion of storage performance has been the subject of many
research projects. Stonehenge [11] tries to address both, but
because it uses bandwidth as its metric of storage perfor-
mance, its reservable performance is limited to a fraction
of the raw disk performance. Parallax [25] was designed to
manage the storage requirements of large numbers of vir-
tual machine images. These images include system data,
like swap files, which are particularly crucial for perfor-
mance. While optimizing overall storage performance, Par-
allax cannot guarantee storage performance for individual
virtual machines. Storage Tank [17] employs data place-
ment on the storage devices as a mechanism for storage vir-
tualization. SLEDS [6] and Façade [14] achieve statistical
performance guarantees, by dynamically adjusting the share
provided to each application stream.

The above approaches address virtualization in the con-
text of large-scale distributed storage systems. Argon [22]
and Fahrrad [18] were designed for individual storage
servers. Following the idea of virtual disks, Argon attempts
to provide each application stream with at least a configured
fraction of the throughput achieved when the stream had the
server to itself. Fahrrad goes a step further, providing hard
performance guarantees in part by fully accounting for all
interference between request streams.

Application requirements and behavior. Each applica-
tion has individual requirements for storage performance
and different applications may use incommensurable met-
rics for specifying those requirements. At the same time, the
resulting performance depends on the application’s behav-

ior, in particular the offered workload. There are three dif-
ferent approaches for managing storage performance based
on application requirements and behavior:

First, application requirements can be used to assign ap-
plications to specific storage devices, e.g. LUNs or disk
arrays [12, 9]. However, these systems cannot (directly)
control storage performance of single devices, hence this
approach inevitably results in over-provisioning the system.
The Minerva system [1, 2] refines this approach by consid-
ering short-term application behavior when assigning de-
vices to workloads. But again, this scheduling mechanism
does not control the device directly to affect (current) per-
formance.

Second, Façade [14] and SLEDS [6] control request la-
tency by dynamically changing the share of storage per-
formance given to each application. Although this mech-
anism can compensate for changes in application behavior,
it makes it difficult or impossible to determine the admissi-
bility of a set of applications and their requirements.

Third, disk I/O schedulers tailored for multimedia ap-
plications directly use application metrics to control I/O
scheduling. Since these schedulers are built assuming
multimedia-specific application behavior,e.g., periodicity,
they are not directly applicable to other domains.

Scheduling and Metrics. Many research groups have de-
veloped I/O scheduling algorithms. The historical focus
was on overall efficiency [16, 20], while later algorithms
provided for control performance using various metrics.
Chen and Patterson [7] discuss the most common metrics,
throughput (similar to bandwidth and I/O rate) and response
time (similar to latency), including their tradeoffs.

Bandwidth and I/O rate are the most common metrics, as
seen originally in XFS [8]. The original Zygaria driver [27]



0 20 40 60

Time (sec)

0

20

40

60

80

100

U
til

iz
at

io
n 

(p
er

ce
nt

)

stream 1
stream 1 reservation
stream 2
stream 2 reservation
stream 3
stream 3 reservation

(a) Utilization, sampled in half-second intervals

0 20 40 60

Time (sec)

1

10

100

1000

T
hr

ou
gh

pu
t (

IO
P

S
)

stream 1
stream 2
stream 3

(b) Throughput, sampled in half-second intervals

Figure 11: Time series for the performance received by three streams under theutilization-based scheduler. The (start, stop) times are (0,
60) for random stream 1, (10, 30) for sequential stream 2, and (20,50) for random stream 3.

allows sessions to reserve an I/O rate based on worst-case
execution time estimates and enforces those reservations
using EDF scheduling. As discussed earlier, the worst-
case execution time assumption can be off by orders of
magnitude when a workload exhibits better than worst-
case locality. Other schedulers focus on sharing of band-
width or I/O rate, including lottery scheduling [23], hier-
archical disk sharing [28], and various fair queuing algo-
rithms [10, 4, 13]—generally without the ability to guaran-
tee rates.

The DAS scheduler in DROPS [19] supports hard real-
time, soft real-time and best-effort applications. DAS al-
lows arbitrary reservation granularity in terms of through-
put. It tries to optimize disk utilization by dividing a job into
mandatory and optional parts; mandatory requests are guar-
anteed and optional requests are executed if there is slack
left from mandatory requests. Since reservations have to be
made using worst-case assumptions, reservable throughput
is low.

Latency is another common metric. Schedulers such as
Façade [14] and SLEDS [6] exploit the tradeoff between la-
tency and throughput: longer queue lengths produce longer
latencies, but allow more efficient disk head movement.
They typically use an active feedback control system to ad-
just the queue length or share given to each session to main-
tain latency goals.

Specialized multimedia schedulers directly support tra-
ditional real-time metrics,e.g., periods or deadlines. They
range fromsimple EDF schedulers,e.g., Clockwise [3]
to multi-level hierarchical schedulers,e.g., Cello [21],
MARS [5], and the work by Wijayaratne and Reddy [26],
supporting various classes of traffic.

Comparing time- and bandwidth-based resource alloca-
tion, Cello concludes that time-based allocation is more
suitable for real-time workloads (e.g., video) and recom-
mends bandwidth allocation for other, more general work-
loads (e.g., file-servers).

Isolation. Isolating one I/O workload from another has
proven to be inherently difficult, hence relatively few disk
schedulers address isolation. Argon [22] providesinsu-
lation between request streams by limiting and mitigat-
ing their interference. Using weighted fair sharing of a
disk among multiple request streams, Argon provides soft
bounds on the overhead due to sharing but does not provide
any other performance guarantees. e.g. feasibility—which
can change due to non consistent workloads. Fahrrad [18]
provides complete isolation between request streams by ex-
plicitly accounting for all seeks, both within and between
streams, and charging each stream for the seeks it causes.

6 Conclusions

Many applications require performance guarantees from
the storage subsystem. Virtual storage devices can both
guarantee the required performance and eliminate interfer-
ence from competing workloads. Bandwidth, the most com-
mon way to express, measure, and manage storage perfor-
mance, depends upon application behavior and therefore
requires worst-case assumptions about I/O patterns. This
leads to low efficiency and little actual control over the ap-
portioning of the disk performance and thus bandwidth is a
poor basis for performance reservation.

Disk time utilization is a more effective basis for virtu-
alizing disk performance. It is 100% reservable and easily
manageable, hence achieved performance closely matches



reserved performance. By embedding knowledge of appli-
cation I/O patterns in the reservations and isolating work-
loads, utilization-based virtual disks can provide greater
throughput than throughput-based schedulers. The results
from our utilization-based scheduler demonstrate these ef-
fects, showing that utilization-based disk virtualization is
both feasible and effective.

Acknowledgments

This work was supported in part by the National Science
Foundation Award No. CCF–0621534.

References

[1] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-
Szendy, R. Golding, A. Merchant, M. Spasojevic, A. Veitch,
and J. Wilkes. Minerva: An automated resource provision-
ing tool for large-scale storage systems.ACM Trans. on
Comp. Sys., 19(4):483–518, Nov. 2001.

[2] E. Borowsky, R. Golding, P. Jacobson, A. Merchant,
L. Schreier, M. Spasojevic, and J. Wilkes. Capacity plan-
ning with phased workloads. InProc. 1st Intl. Workshop on
Software and Performance, pages 199–207, Oct. 1998.

[3] P. Bosch, S. J. Mullender, and P. G. Jansen. Clockwise:
A mixed-media file system. InProceedings of the 1999
IEEE International Conference on Multimedia Computing
and Systems (ICMCS ’99), pages 277–281, June 1999.

[4] J. L. Bruno, J. C. Brustoloni, E. Gabber, B. Özden, and
A. Silberschatz. Disk scheduling with quality of service
guarantees. InProceedings of the 1999 IEEE International
Conference on Multimedia Computing and Systems (ICMCS
’99), pages 400–405, 1999.

[5] M. M. Buddhikot, X. J. Chen, D. Wu, and G. M. Parulkar.
Enhancements to 4.4 BSD UNIX for efficient networked
multimedia in project MARS. InProc. of the 1998 IEEE
Intl. Conf. on Multimedia Computing and Systems, pages
326–337, June 1998.

[6] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu,
R. Menon, and T. P. Lee. Performance virtualization for
large-scale storage systems. InProc. of the 22nd Symp. on
Reliable Distributed Systems, pages 109–118. IEEE, Oct.
2003.

[7] P. Chen and D. Patterson. Storage performance—metrics
and benchmarks.Proceedings of the IEEE, 81(8):1151–
1165, Aug. 1993.

[8] S. Ellis and J. Raithel. Getting started with XFS filesys-
tems. Document Number 007-2549-001, SGI, Inc., Moun-
tain View, CA 94043, 1994.

[9] EMC. EMC ControlCenter software family data sheet.
http://www.emc.com/products/storage_management/
controlcenter/pdf/H1082_CC_Stor_Fam_LDV.pdf, 2004.

[10] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queu-
ing: A scheduling algorithm for integrated services packet
switching networks. InProc. of SIGCOMM 1996, the ACM
Symp. on Communications, Architectures, and Protocols,
pages 157–168, 1996.

[11] L. Huang, G. Peng, and T. cker Chiueh. Multi-dimensional
storage virtualization.SIGMETRICS Perform. Eval. Rev.,
32(1):14–24, 2004.

[12] IBM Corp. IBM TotalStorage Productivity Cen-
ter. http://www.ibm.com/servers/storage/software/center/
index.html, 2004.

[13] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional
sharing for a storage service utility. InProc. of SIGMET-
RICS 2004, the Intl. Conf. on Measurement and Modeling

of Computing Systems, pages 37–48. ACM SIGMETRICS,
June 2004.

[14] C. R. Lumb, A. Merchant, and G. A. Alvarez. Façade:
Virtual storage devices with performance guarantees. In
Proceedings of the Second USENIX Conference on File
and Storage Technologies (FAST), San Francisco, CA, Apr.
2003.

[15] C. R. Lumb, J. Schindler, and G. R. Ganger. Freeblock
scheduling outside of disk firmware. InProceedings of the
2002 Conference on File and Storage Technologies (FAST),
Monterey, CA, Jan. 2002.

[16] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIX.ACM Transactions on Computer
Systems, 2(3):181–197, Aug. 1984.

[17] J. Menon, D. A. Pease, R. M. Rees, L. Duyanovich, and
B. Hillsberg. Ibm storage tank - a heterogeneous scalable
san file system.IBM Systems Journal, 42(2):250–267, 2003.

[18] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M.
Wong, and C. Maltzahn. Efficient guaranteed disk request
scheduling with fahrrad. InEurosys 2008, April 2008.

[19] L. Reuther and M. Pohlack. Rotational-position-aware real-
time disk scheduling using a dynamic active subset (DAS).
In Proceedings of the 24th IEEE Real-Time Systems Sympo-
sium (RTSS 2003), Dec. 2003.

[20] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling re-
visited. InProceedings of the Winter 1990 USENIX Techni-
cal Conference, pages 313–323, Jan. 1990.

[21] P. J. Shenoy and H. M. Vin. Cello: A disk scheduling frame-
work for next generation operating systems. InProceedings
of the 1998 SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 44–55, Madison, WI,
1998.

[22] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: performance insulation for shared storage
servers. InProceedings of the 5th conference on USENIX
Conference on File and Storage Technologies (FAST ), pages
5–5, 2007.

[23] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:
Flexible proportional-share resource management. InPro-
ceedings of the First Symposium on Operating Systems De-
sign and Implementation (OSDI’94), Nov. 1994.

[24] M. Wang. Performance modeling of storage devices using
machine learning.PhD Thesis, CMU-CS-05-185, January
2006.

[25] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand.
Parallax: managing storage for a million machines. InHO-
TOS’05: Proceedings of the 10th conference on Hot Topics
in Operating Systems, pages 4–4, 2005.

[26] R. Wijayaratne and A. L. N. Reddy. Integrated QOS man-
agement for disk I/O. InProc. of the 1999 IEEE Intl.
Conf. on Multimedia Computing and Systems, pages 487–
492, June 1999.

[27] T. M. Wong, R. Golding, C. Lin, and R. Becker-Szendy.
Zygaria: Storage performance as a managed resource. In
12th IEEE Real-time and Embedded Technology and Appli-
cations Symposium (RTAS06), Apr. 2006.

[28] J. Wu, S. Banachowski, and S. A. Brandt. Hierarchical
disk scheduling for multimedia systerms and servers. In
Proceedings fo the ACM International Workshop on Net-
work and Operating System Support for Digital Audio and
Video (NOSSDAV ’05), pages 189–194, Stevenson, WA,
June 2005. ACM.


