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ABSTRACT

Guaranteed I/O performance is needed for a variety of agplic
tions ranging from real-time data collection to desktop time-
dia to large-scale scientific simulations. Reservationshoough-
put, the standard measure of disk performance, fail to &ty
manage disk performance due to the orders of magnituder-diffe
ence between best-, average-, and worst-case response &e
lowing reservation of less than 0.01% of the achievable Wéditt.
We show that by reserving disk resources in termsitifzation

it is possible to create a disk scheduler that supports vaten

of nearly 100% of the disk resources, provides arbitrardydhor
soft guarantees depending upon application needs, ardk\aéi-
ciency as good or better than best-effort disk schedulersdtdior
performance. We present the architecture of our scheduleve
the correctness of its algorithms, and provide results aestnating
its effectiveness.

Categories and Subject Descriptors

D.4.2 [Operating System$: Storage Managementsecondary stor-
age D.4 [Operating System$: Performance

General Terms
Algorithms, Design, Management, Performance, Theory

1. INTRODUCTION

As general-purpose computer systems become increasiogly p
erful, they are called upon to perform tasks traditionatigarved
for special-purpose systems. These include tasks requliramd
and soft timeliness guarantees in applications such asmadlia,
real-time data acquisition and control, real-time imag&cpssing,
and scientific visualization. At the same time, real-timebedded
systems are increasingly called upon to manage more datadma
fit in RAM, as in a GPS mapping application. Disk 1/O, gensrall
considered too slow and too unpredictable to be managedras pa
of traditional real-time processing, is an essential aspkemany
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of these applications, which may require guarantees fromgles
disk or a large distributed storage system.

Like a CPU scheduler, the basic goal of a real-time disk I/O
scheduler is to provide timeliness guarantees. As with GiPedul-
ing, we want to support applications with arbitrary perfamoe
requirements and reservation granularities (periods). sthsage
systems, especially large storage systems, may condyreeig-
port a wide range of applications, the need to support a vedge
of timeliness requirements also emerges, including habitime,
soft real-time, and best-effort. The mechanical naturésisdadds
an additional set of requirements. Sequential I/O accesqmeri-
ence orders of magnitude lower latencies than random axassl
good request scheduling can provide a corresponding iseriea
1/0 performance by reordering requests to increase seqlignt
Thus a real-time I/O scheduler must provide not just guaetht
performance, but also good performance, as close as pagsibl
that provided by a general-purpose 1/O scheduler. It msst iab-
late request streams so that the I/O behavior of one requeats
does not cause another to violate its requirements.

General-purpose applications (and application deveg)pgend
to express 1/O performance requirements in terms of thrpugh
i.e., Kb/second, MB/minute, transactions/hoat¢. Real-time ap-
plication developers tend to state bounds on latency intiaddi
to throughput. From a real-time systems perspective, dgtén
bounded by a reservation granularity. However, effecfivabn-
aging disk 1/0O in terms of throughput is challenging for foea-
sons: individual disk requests are non-preemptible; I/Quest
times are stateful, depending in part upon the location efptte-
vious request, which may have been from the same or a differen
I/0 stream; 1/O times are partially non-deterministic, eleging
upon unknown factors such as track boundaries; and bestage-

, and worst-case I/O times can vary by several orders of nadgi
with best-case requests, served out of internal memorigaki-
croseconds and worst-case requests, requiring gross neoverh
the read/write head, taking tens of milliseconds. Hardubhput
guarantees require worst-case assumptions about reguest te-
sulting in the ability to reserve0.01% of the maximum achievable
disk throughput.

The Fahrrad real-time disk 1/0 scheduler uses a different ap
proach based odisk time utilizationreservations. Disk time uti-
lization reservation is expressed as an amount of time awditk
make available for a given request stream to service |/Oagigu
Utilization reservations have three primary benefits. tFilisk time
utilization is easily reservable: there is 100% availabiid appli-
cations may reserve any portion of the unreserved totajésuto
admission control requirements). Second, disk time atiitn is
easily manageable: application usage may be tracked bydimi
each request. Any application whose usage is below itsvaser



tion may make additional requests until its reservation teesn
met and any application whose utilization reservation feenbmet
must wait for service. Third, disk time utilization resetieas en-
capsulate knowledge about application I/O behavior, amgithe
need to make worst-case assumptions and allowing applitsatd
reserve and the system to provide—and guarantee—sigrilfican
better disk throughput than would otherwise be possible.

The primary contribution of this work is the presentationaof
general-purpose /O scheduler capable of providing haetagu
tees while maintaining performance that can exceed thaest-b
effort general-purpose I/O schedulers. In so doing, we destnate
the effectiveness of utilization as a means of managingbsfor-
mance and demonstrate that resource reservations and rf@-pe
mance are not mutually incompatible.

We begin by describing the Fahrrad scheduling model, ptove t
correctness of a basic scheduler based on this model, thenssi
extensions designed to address practical disk I/O issuescon-
clude with results from our implementation showing the effee-
ness of our Fahrrad implementation.

2. THE FAHRRAD SCHEDULING MODEL

In our system, 1/O reservations are made via a broker. THeebro
decides if a reservation is feasible (and allowed) and mfoboth
the requester and the 1/0 system of successful reservatioms-
der to make utilization reservations, a requester spedifieesired
throughput and/or latency and its expected I/O behaviajuse-
tiality, burstiness, etc.) to the broker. The broker trates these
into the utilization and granularity required to suppor tfesired
throughput and latency given the application 1/0O behavior.

Although potentially difficult to specify for arbitrary apga-
tions, applications requiring I/O guarantees often knoeirtt/O
behavior: multimedia applications have highly sequerdiaess
patterns, high-performance scientific applications hagbly reg-
ular access patterns, etc. Given knowledge about disk osu
system performance characteristics, it is relatively easfrans-
late throughput and 1/0O behavior into utilization. Thus|@sg as
our 1/0O system can guarantee utilization, it can in effecrgatee
throughput, but without the worst-case assumptions (amfbpe
mance) that plague throughput-based reservations. Wioghng
is known about the I/O behavior, we can assume the worst-oase
sulting in no worse performance than with throughput-basted-
ulers.

Latency is a combination of the delay imposed in the schedule
and the delay caused by applications queueing up requeHsoA
priate translation from expected 1/0 behavior and throwgipto
utilization bounds the delay caused by an application. I&ppli-
cation sends I/O requests according to its reservatiomed@sests
will be queued no longer than the application-specifiedriedion
granularity (period), bounding the latency imposed by ttlees-
uler. This can be formalized with a queueing theoretic maahel
is demonstrated empirically in Section 9.3.

Once translated into utilization, the feasibility test &mmission
control is simply whether or not the sum of the utilizations &
given disk or I/O subsystem exceeds 100%. Additional pedici
for instance those based on QoS contracts, may imposeadditi
constraints.

Our Fahrrad scheduler is designed to guarantee utilizagieer-
vations while maintaining high 1/0 performance. In Fahrnader-
vations are associated with I/0 streams. An I/O stream najcee
requests from any logical entity: an application, set ofiapfions,
host, virtual host, set of hosts, set of usets,

This architecture implicitly assumes that the performaoicine
disk can be known for an individual 1/0 stream. This is true to

the degree that an application’s performance is relatedstba-
havior. Interference from other 1/0O streams can affectiagppbn
performance, but Fahrrad both mitigates and, where unabtsd
accounts for these effects. Poor data layout can also gifaet
formance by turning a logically sequential request streato a
physically random access pattern. We assume good layoutaf d
on the disk platter, but some degree of uncertainly will rendaie
to layout and other disk peculiarities.g.,recalibrations to account
for thermal expansion. This degree of uncertainty can beireémp
cally quantified, and much of it can be offset by bufferingd/e@nd
reserving a small amount of “overhead” utilization.

Our system distinguishes between hard and soft timeliress r
quirements only during I/O reservations. Hard real-timpliap-
tions require worst-case disk performance assumptiongt r&o
quirements allow a certain degree of uncertainty about psfor-
mance and so the broker can use knowledge of request time dist
butions to make less than worst-case assumptions for edgeTS.
After the reservations are made, our Fahrrad scheduleida®v
hard utilization guarantees for all /O streams.

The RBED CPU scheduler [2] addresses many of our goals in
the context of CPU scheduling. It provides robust, guaedten-
tegrated real-time scheduling of processes with a widearahdif-
ferent timeliness requirements, and guarantees isolatiwng the
processes regardless of their run-time behavior. Fahoeshds
RBED to disk I/O scheduling. Like RBED, Fahrrad allows apgti
tions to reserve utilization—in this case disk utilizatieand spec-
ify deadlines at which the reservation must be met. And sind
RBED, applications may make arbitrarily hard or soft reaions.
1/0 request dispatching is based loosely on EDF [10], butesig
sive request reordering is made possible via a Disk ScheglGlet
(DSS) which enables extremely good performance; in somescas
better than that of performance-tuned best-effort I/O dalezs.

In extending the RBED scheduler, Fahrrad similarly implatae
the Resource Allocation/Dispatching (RAD) scheduling elo@he
RAD model is based on the observation that scheduling dsnsis
two separable resource management questldoa: muchresource
to allocate to a process? aw¢hento provide the process those al-
located resources? In the context of CPU scheduling, RAD has
two layers: resource allocation, which ensures feasilsleuee al-
location and maps application requirements igtie anddeadline
parameters, and dispatching, which chooses which prooess-t
ecute based upon those parameters. Rate and deadline leave be
shown to be sufficiently flexible to enable a scheduler to et
full spectrum of timeliness requirements [9].

Because disk 1/O is stateful, adapting RAD to disk schedulin
requires the addition of a third layer concerned with 1/Ouest
ordering Fahrrad orders individual 1/0 requests by logically gath-
ering as many requests as possible into a set with the pyohett
the I/O requests in the set can be executed in any order viitiiou
olating any guarantees. Fahrrad then schedules the reqoébis
set using an appropriate head scheduling algorithm witrgtieé
of executing the requests as fast as possible. Althouglitioriu
suggests that SSTF should provide the most efficient schethis
does not always turn out to be the case, as we discuss in Séctio

We present our Fahrrad scheduler as follows. We first describ
the basic 1/0 scheduler that guarantees utilization resens as
long as all I/0 requests are available at the beginning df pae
riod. It accounts for the non-preemptability of disk regaedut
it neither provides good performance nor ensures throughpla-
tion between streams. Section 3 presents the formal bastbdo
basic scheduler, and Section 4 provides its implementaiétails.
Section 5 shows how to improve the scheduler to account for re
quest statefulness, and thus how to get good performantewri



losing the guarantees we prove for the simplified model. iGeét
shows how to provide isolation between 1/O streams. Segtim
moves the assumption that all I/O requests are availableedbe-
ginning of each period and shows how Fahrrad deals with wreglie
1/0 requests. Finally, Section 8 discusses further peréoca en-
hancements.

3. FAHRRAD SCHEDULER THEORY

Our basic I/O scheduler guarantees utilization resematias
long as all I/0 requests are available at the beginning dfi pae
riod. In this section, we provide a feasibility test for sdhkng
tasks in the basic scheduler and prove its correctness. ¥de al
quantify the additional reservation needed to guaraneecserved
utilization as a result of the non-preemptability of I/O uegts.

3.1 Task model

A unit of disk 1/O reservation is a related set of requesttedal
a request stream. The requests may come from a single user, pr
cess, application, or set of these. A reservation for atigad-1/0
stream consists of thaisk time utilizationand theperiod of the
stream. The utilization specifies the percentage of dislk tiex
quired to execute requests from the I/O stream. The perieciféps
the granularity with which the I/O stream must receive itereed
utilization.

In a system withn I/O request streams, a ta3k corresponds
to streami with utilization u; and periodp;. Each task is a se-
guence of periodic job ;, with release time; j = d; j_1, deadline
di,j = ri,j + pi, and budget = u; - pj. Each jobJ; j is a sequence
of my j I/O requestsR; j . Table 1 summarizes the notation used
throughout this paper.

Jobs are preemptible, but individual 1/O requests are néte T
execution times of /O requests vary, but the worst-caseasy
time (WCRT) is bounded by the worst-case seek time of thecdevi
plus the maximum rotational delay plus the time requireddng-
fer the data and is empirically determinable with a high deguf

1: Notations
n number of I/0 streams in the system
Ti task which corresponds to an 1/O stream
Ui disk time utilization of tasKij

pi period of taskT;
g budget of each job ofi, & = u; - p;

Jii job of taskT;

rij release time of joly;

dij deadline of job); j

mij  number of I/O requests in jol j
R.jk 1O request of jokJ

ajjk actual execution time of requeRt; «
pPijk (micro-)release time of requeRf j k
8 jk (micro-)deadline of reques, ; «

THEOREM 1. Given a set of periodic tasks With period p
consisting of jobs i}, each consisting of a stream of; non-
preemptible 1/O requests; Rk, each of which takes; j x < WCRT

such thatVvi, j Zzljlai,j,k < g ), Earliest Deadline First (EDF)
will determine a feasible schedule of I/O requests, as lang a

n
U— Zui L WCRT
& ming<i<n (P1)

In proving the theorem we use two lemmas by Liu [11] (pp. 163—
164). The first specifies how long a task can be blocked due to
the non-preemptibility of other tasks in the system. Thipp®ns
whenever a non-preemptible region of a task with lower fixior
(a later deadline) is executing when a task with higher fiyigan
earlier deadline) is released. In the worst case the highiyritask
may have to wait for the entire duration of the non-preentgtib
region of the lower priority task. Under EDF, any task mayéav
higher priority than any other, depending upon the phasfrthe®
deadlines, and so we get the following lemma.

confidence. We use constant WCRT, because we use constant 4K | a1 (Liu) In a system with n tasks scheduled by EDF, the

request sizes for our request accounting, which matchesitiee
that many systems actually send. If we are presented wigfe lar
1/0O requests, we execute each of them as one request lgdicat
ken into 4K chunks. Except to fit within the reserved utiliaat
such requests will not be physically broken up. In practive,

have determined WCRT by finding the maximum response time of

highly random workloads and discarding a small number dfenst
(0.1%). These outliers can be accomodated by a small “oadfhe
utilization reservation. We initially assume that all I/@quests are
queued up at the beginning of each period.

Our model is slightly different from the basic task modeldise
CPU scheduling in that jobs are further divided into norepngtible
1/0O requests analogous to non-preemptible portions of Gid, |
e.g. when a job is in a critical section. We use previous work
on real-time CPU scheduling with non-preemptible regionthie
analysis of our model.

3.2 Meeting deadlines

We assume that each request takes no more than WCRT and each n g bi

job Ji j is a sequence afy j requests. We now prove a feasibility
test for scheduling such jobs under EDF based on the utdizag-
quired for each 1/O stream and a little extra to account focking
due to the non-preemptability of I/O requests.

maximum blocking time; tnp) of a task due to non-preemptivity is
given by
bi(np) = max 6
Wheref, denotes the longest non-preemptible portion of any job
intask T.

The second lemma defines a utilization-based schedujadtlit-
dition for EDF when executing tasks that may block, eithesély-
blocking or due to the non-preemptibility of other tasksisithe
standard EDF schedulability condition with an additioreaht ac-
counting for the blocking time.

LEMMA 2. (Liu) A task T with utilization y, deadline B, pe-
riod pj, budget e= u; - p; and total blocking timekis schedulable
with other independent periodic tasks on a processor aéogrtb
the EDF algorithm if

: +— <1
.; min(Dy, p) ~ min(Di, pi)
The system is schedulable if the condition is met for every i

1,2, ...,n



We are now ready to prove the theorem.

PROOF The longest non-preemptible portion of any job is a sin-
gle /O request, each of which is bounded by the worst-capeest
time (WCRT). Thus by Lemma 1, the maximum blocking time of
any task due to non-preemptability(np) = WCRT. Our jobs do
not block themselves, 4 = b;(np) = WCRT.

Lemma 2 says that a system of ta3kss schedulable if

< g by
“Q;mmwQﬁnmmmo<Q @

In our systemy! (D) = p;) andb; = WCRT, and so Equation 1
is equivalent to

n
afge woRrT
=aL Pi

We know thatg /p; = u; and

. (WCRT) WCRT
Vi < —
pi min(p;)

and so a system of tasKsin our system is schedulable if

l WCRT

2,4 finpy =1

In other words, a task set that would be feasible under préeenp
EDF (.e. wherey u; < 1) is feasible in our system as long as we
reserve enough extra time for 1 worst-case request in tRentidls

the shortest perio WCRT). O

min(pi)

3.3 Guaranteeing utilization
Theorem 1 ensures that if we hawg;j requests per period and

zﬂl‘iawk = g then our utilization guarantees are met. However,
request service times are not knoapriori and are partially non-
deterministic: they can only be known after the request loas-c
pleted. Thereforem ; can only be determined at run-time, after
the utilization guarantee has been met, by counting the rumwib
requests required to achieve the reserved utilization.

Because requests are non-preemptible with maximum patenti
execution time WCRT, we cannot issue a request unless theapb
at least WCRT time remaining in the current period. In oraer t
guarantee the desired budgeto each johJ; ; the scheduler must
actually budget + WCRT. In other words, in order to guaran-

tee utilizationu; = % we must reserve utilization’ = W.

This is expressed fbrmally in the following Theorem:

THEOREM 2. Given a set of tasks Tonsisting of jobs;J with
budget ¢ each job consisting of a series of requests Rwith ac-
tual execution time; j x« < WCRT known immediately after com-
pletion of the request, in order to guarantee the budgeh @ach
period the scheduler must reserve ¢ u; + WCRT/p;.

PROOF By contradiction.
Suppose we reseneg’ = U +Y/ pi, wherey < WCRT. Then we
have budge&’ = g +y for each johyJ ;.

Suppose further that a particular jdp, consists of a request
stream of reques® m such that

and therefore
n—1
z A mk =& — 0| mn
K=1

The scheduler cannot issue requBgk,, unless jobJ m has
enough budget remaining for the request’s worst-case, WTIRS
we get the inequality

€6 — 0 mnt+WCRT<g-+Yy

aj mn can be arbitrarily small (for example, when serving a smalll
request out of the track buffer), and so we have

6 +WCRT<eg+y

This contradicts the assumption that WCRT. [

Theorem 2 says that in order to guarantee the reservedatitiiz
to a request stream regardless of the I/Os it requires arahtbent
of time they take, we must reserve enough utilization for extea
worst-case request per period.

4. BASIC FAHRRAD SCHEDULER

To meet the condition of Theorems 1 and 2, the broker reserves
extra time for one worst-case request for the stream witlsiogt-
est period and one additional request per period for eackti&am.
The broker admits a new 1/O stream if the sum of the augmented
utilizations of the new and existing streams plus the naepptibility
overhead are less than or equal to 100% of the disk utilizatio
In practice, as long as the periods are not too shat, 6econds
or longer), these overheads are insignificant. 1/0 stredatsdo
not require real-time guarantees are combined into onedfiest
stream, which receives the utilization left over from thalwéme
streams. The scheduler reserves a minimum utilization iimalhg
2%) for the best-effort stream to make sure that it is notvsthr
completely.

The basic scheduler architecture consisteqfiest stream queues
and arequest dispatchess shown in Figure 1. Each request queue
contains the requests from a single 1/0 stream and requests-a
dered by their arrival times. The request dispatcher tadgsasts
from request queues and sends them to the disk while engheang
streams get their reserved utilization in each stream geavithout
exceeding their reservations.

To help the request dispatcher do accounting of how many re-
quests it can (and must) dispatch per period within eaclsise
reserved utilization, we assignmaicro-deadlined; j  to each re-
guest in each stream. Given the micro-deaddng,_, of the pre-
ceding request, the micro-deadlidg;  of the current request is
assigned

WCRT

Vi, ), K8k O j k-1t y
ll

Since micro-deadlines are assigned in evenly spaced ai$eof
length WCRT/ u;, the number of requests with micro-deadlines ear-
lier than the stream’s deadline j& /WCRT| which is the min-
imum number of requests we must issue in the beginning of the
period.
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"1 7000 |°° [ 400 | ~T 7000 2000 deadlines
315 350 875 1750
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&2 250 | | 625 1250
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250 100 250 500
125 50 125 250

Dispatcher
EDF

Disk

1: Basic Fahrrad architecture.

At the beginning of each period, the request dispatcherssend
requests to the disk in Earliest Micro-Deadline FirguDEF) order,
as long as their micro-deadlines are less than or equal wmient
period. Each time a request completes, the scheduler nesaissir
actual execution time; j x, and if a; j x < WCRT, it adjusts the
micro-deadlines of all requests in streaas follows:

A WCRT— Gi.j.k
Vil o =G ————————
Ui

In practice, micro-deadlines are stored as offset of peast value,
and offset is updated in constant time.

Any request whose updated micro-deadline is earlier than it
stream’s deadline will also be sent to the disk in the curpent
riod. As an example, consider stream A shown in Figure 1 with
20% utilization reservation and a period of 250 ms. If WCRT =
25 ms, this reservation is capable of servicing at least Rastg
per period. Initially the micro-deadlines of the first threguests
are 125 ms, 250 ms, and 375 ms. The dispatcher issues thafirst a
second requests in the beginning of the period. If the ficpaest
takes only 5 ms, the micro-deadlines of the second and thid r

(m +1)'th request is the modified j m

m-WCRT m -WCRT-— Zﬂllqi,j,k
Pijm+1="Tij+ — = ,

Ui Ui
which reduces t@; j m+1 = ri,j +X/ui. The remaining time; of
streami left in the current period

X X
Vi=dij—Pijmr1=0ij—lij— =P
| |

The number of evenly spaced intervals of length WEZ&Tn inter-
valy; is (pi —x/u;)/(WCRT/u;) = (g —x)/WCRT. So the number
of worst-case requests that fits into this interval(is — x) /WCRT].

5. DEALING WITH THE STATEFUL NATURE
OF DISK I/0

We extend the basic architecture to allow efficient reordgdf
disk requests without violating any utilization guaraste&Vhile
dispatching requests indbF order guarantees deadlines, it pro-
vides poor performance because it ignores the cost of spéhén
disk head. Request reordering addresses the statefulhessko
1/0 by rearranging queued disk requests so as to minimiztothk
movement of the read/write head needed to service thosestju
Since requests from a single stream are more likely to be dlws
each other on disk than requests from different streams,dhi
ten means taking several requests in a row from a single seque
stream, violating the EDF ordering. However, as head movement
takes time, minimizing it by re-ordering requests can sigantly
improve throughput.

Many algorithms exist for optimizing disk performance bynini
mizing seek time. Their performance is generally limitedHyac-
tual requests in the queue—reordering can only achieve sh+au
and by the need to eventually service all requests. Sindeciffest
1/0 schedulers do not know the acceptable latency bound-on r
quests in individual streams, a system-level heuristigjdied to
bound the amount of time a disk request can languish withemt s
vice.

In real-time disk scheduling, reordering may not be as flexib
as in non-real-time systems because it must not violateagtees.
With very short deadlines this has the potential to decrgase
formance unacceptably. On the other hand, because we kreow th
deadlines of each 1/O stream (however they were determimesl)
need not guess at heuristics in an effort to be fair. With allthe

quests become 150 ms and 275 ms. If the second request a@so tak shortest deadlines, this has the potential to increasalbt@iough-

5 ms, the micro-deadline of the third request becomes 175 ms
250 ms, and this request is also sent to the disk in this pefibd
scheduler will keep shifting micro-deadlines as requestspete
and will continue to issue requests from the stream untitfezo-
deadline of the request at the head of the request queueategre
than the deadline. When that occurs, the utilization regem has
been met.

Shifting micro-deadlines correctly accounts for the distetused
by each stream per period. Initially the dispatcher issues
|&/WCRT] requests for each stredmSuppose each request takes
time aj j x < WCRT, and letx= 3! ; aj j k. We show that the
scheduler correctly dispatchégg — x)/WCRT| more worst-case
requests during this period to meet its utilization resgova(this
will repeat until the scheduler cannot fit any more requesthis
period).

Initially, the micro-deadline of thay’th request idj j m =i j +
m; - WCRT/u;. After shifting micro-deadlines, the release time of

put relative to best-effort I/O schedulers, an effect weehssen in
our implementation.

5.1 Efficient request reordering

The extended Fahrrad architecture consists of four pads:
quest stream queugthe Disk Scheduling SEDSS), the request
dispatching policy and the requestrdering policy The request
dispatching policy moves requests from the request stramues
to the DSS such that the DSS always contains the largest set of
requests that can be executed in any order without violatiiiga-
tion reservations.

The request dispatching policy determinesequest horizor-
the earliest deadline in the system—and moves all requéags w
micro-deadlines no later than the request horizon into t880On
the example shown in Figure 2, the first horizon is the deadbin
stream Adpa 1 = 250 ms, so all requests in all streams with micro-
deadlines); j x < da 1 are moved into the DSS.
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2: Example of dispatching to the DSS.

Since this includes all of the requests from the stream vhigh t
earliest deadline, executing all of the requests in the D8Sary
order—is guaranteed to execute all of the requests reqtanedet
the earliest deadline in the system. We now show that it isygdw
possible to do so before the deadline, regardless of the ande
which the requests are executed.

First, the total disk time needed to guarantee executionlof a
requests in the DSS does not exceed the time left before tite ho
zon. Suppose this time ks Since micro-deadlines are assigned in
evenly spaced intervals of size WCRY, there arg x- u;/WCRT|
worst-case requests in the DSS from each streahme total disk
timey needed to guarantee requests from all streams is therefore

y =3 WCRT-|
< 3", WCRT.

_ n "
=X i Ui

XU J

X-Uj

WCRT

S, ui <1, so we have the inequality

n

y < x- i;w <X

This means that there is enough time to execute all requests i
(or moved to) the DSS before the horizon if they take no maaa th

quest horizon, the horizon is moved up to the next earliesdlifee
and the DSS is again filled with requests. If disk time in theSDS
did not fit an integral number of requests, the horizon is rdaye
earlier (but not more than one WCRT earlier). This ensurasttie
disk time unused in the previous scheduling interval willdvail-
able in the next scheduling interval.

We can use C-SCAN or SSTF as our reordering policy, because
they both generally provide good performance. Both ensuae t
most contiguous requests in the DSS will be serviced seiglignt
providing good performance for those streams whose regjhase
good locality. Because micro-deadlines are continuallystdd
as requests are serviced and more requests are moved to $he DS
if there is enough disk time budget, the potential localiay dbe
significant. In particular, if stream A in Figure 2 is sequehta
locality-respecting ordering algorithm can continualgndce re-
quests from stream A until it reaches its budget of 50 ms,tiyrea
improving the performance of that stream.

ISOLATION FOR THROUGHPUT GUAR-

ANTEES

The Shortest Seek Time First (SSTF) algorithm, which we ini-
tially implemented in the DSS, provides good performancenvh
DSS sizes are big, because there is a lot of opportunity for re
ordering. However, the size of the DSS is limited by the retjue
horizons, which may be short even if only one stream in a syste
has a short period, imposing additional seeks on all reqiestms
and thereby limiting performance. This is unacceptableyesilti-
mately want to be able to make throughput guarantees basmaton
utilization reservations; each stream’s performance roadiased
only on its I/O behavior, not that of other streams.

6.

6.1 Early deadline extension

As soon as a stream has used its budget for the current p#riod,
has met its deadline and its next job can be released andhitiice
extended to the end of the next period. When the job with the ea
liest deadline does this the horizon is advanced to the rahest
deadline in the system, allowing more requests into the OB8.
does not cause any deadlines to be violated because we iy al
new requests into the DSS after we have met the earliestidead|
The new horizon is the next earliest deadline, so the DSSgdin
contain only requests with micro-deadlingsthe earliest (unmet)
deadline. In other words, we always maintain the invariaat the
DSS contains all and only those requests whose micro-aeaidli
less than or equal to the earliest deadline in the system hdvee
in Section 5 that executing these requests in any order ofilVio-
late the deadline of the stream with the earliest deadline.

their worst-case time. One can view the DSS as a set of WCRT 1 he ordering policy can ensure that the horizon is extended a

slots and moving requests to the DSS as filling the slots.dasy
to see that the order of the slots does not matter, since tieeglla
of equal size.

quickly as possible by schedulingpttleneck requestsrequests
from the stream with the earliest deadline—first. Fahrraudefore
uses EDF on stream deadlines in the DSS and SSTF for requests

We now consider the case when requests take less than WCRTOf streams with the same deadlines. This policy providegebet

If a request takes less than WCRT, the micro-deadlines akall
quests of its stream are shifted as described in the presaxton.
The request dispatcher moves requests whose micro-desdtitave
become less than or equal the request horizon into the DS8itAd
ting new requests to the DSS does not violate any guarantees f
requests currently in the DSS, because shifting microddesglas-
sumes worst-case time for requests that are not yet exezntkithe
argument is similar to the argument given above. Thus reiogle
in the DSS does not violate any utilization reservations.

When all requests in the DSS are executed and the microidead|
of all requests in all stream queues are greater than thentue-

performance isolation because bottleneck streams do rmisen
seeks on other streams in each period, because they areeskervi
continuously until the stream with the next deadline becothe
bottleneck stream.

6.2 Accounting for seeks from other streams

EDF scheduling when all requests are available at the biegjnn
of each period removes all but two extra seeks not causedéry in
stream seeking. At least one seek is required to and awaytfrem
stream whose deadline is the request horizon.



THEOREM 3. The number of seeks S required to process n streanmrequest distribution can be characterized, it can be at¢ediaor in

of requests< 571, (s +2), where sis the number of seeks required
to process the requests of stream i when handled in isolatien
without interference from requests belonging to any othreasn.

PROOF Assume we hava streams of requests, each requiring
a;j seeks when run in isolation. By definition, we have to process
some requests from streamvithin each period of stream The
seeks between requests of streiaamd other requests of stredm
are no different from when the stream is processed in isolathd

sum up tos. The only extra requests are those between requests

of streami and streamj. These are imposed once per period as
we seek to and from the requests of the stream with the darlies
deadline.

O

the stream’s reservation. Otherwise, the performanceesobffend-
ing stream must simply suffer.

7.1 Current implementation

Our current implementation holds stream'’s reservatiornsrags
as possible. The scheduler creates empty slots for taskddtret
have enough requests queued up, assigns micro-deadlitiesnto
and moves them to the DSS using the same policy we use fol actua
requests. Therefore, the DSS is essentially a set of WCRT, slo
either empty or filled with requests. The reordering poliends
actual requests to the disk, ignoring empty slots. If a retjagives
whose stream has one or more empty slots in the DSS, the teques
fills the stream’s empty slot with the earliest micro-demelliWhen
only empty slots are left in the DSS, the scheduler startiriexp
empty slots and their disk time is donated to other streams.

Thus in order to guarantee isolation we must reserve for each The scheduler currently donates the disk time from expiietd-s-

WCRT _ ) 4 3. WCRT ' Thjs |im-

stream utilizatioruj/” = uj7 +2- . .

its the impact of imposed seeking to the stream responsibliné
seek, and guarantees throughput isolation between strigating
case where all requests are queued up at the beginning opeach

riod.

7. DEALING WITHUNQUEUED REQUESTS

Our discussion so far has assumed that all requests aralaeail
at the beginning of each period. In practice, applicatiardd/O
requests in varying patterns. Some applications may onhg ha
few outstanding requests in their queues and the timingmpfest
arrivals during the period may vary. To provide good guaFest
we would like to hold onto reservations as long as possibliaab
a stream has the greatest possible chance of using its atserv
regardless of when its requests arrive.

To accommodate time-varying request arrival patternss¢hed-
uler holds onto reservations by holding empty slots in th&BS
tasks that do not have enough requests queued up. Emptyasiots
expired no later than the job’s deadline if requests do ndteato
fill them. Empty slots have the potential to negatively intpgaer-
formance in two ways. First, unqueued requests may causa ext
seeks as the head moves between requests of different (fjueue
quest streams instead of contiguously servicing all of driests
of the process with the earliest deadline. Second, an erfyitgiise
for execution is the disk equivalent of a task blocking ftsielring
its period. As discussed in Section 4 and quantified in Lemma 2
such self-blocking must be accounted for in the utilizataicula-
tions.

This leads to mutually conflicting goals: To make good guaran
tees we want to hold empty slots as long as possible, but tid avo
the overhead from the extra seeks needed to seek betwees the r
quests of the stream which now has an empty slot and thosenaf so
stream with a filled slot we would prefer to immediately eegine
slot of the offending task. If the request arrival pattertkn®wn
ahead of time, it can be accounted for in the utilization mese
tions. In the worst case, where all requests may arrive aétige
of the period, this leads to too much overhead. Caching chn he
by queuing requests in one period and servicing them in tRe ne
but some requests are uncacheable. Read-modify-writd eaat,
for example, will not queue up the write until after the reas h
completed and some processing has been done.

Our solution lies somewhere in between: empty slots can be
held, but the stream responsible for the seeking, by virfusob
having its requests queued up, must be billed for the additio
seeks that result. This overhead affects only the streanfdited
to queue up its requests, as desired. To the degree thaltimpy”

dynamic slack—to the best-effort stream. If there are no-bfert
requests, the scheduler idles the disk. There are moreeseffivays
to donate slack and in the future we will explore using slackrt-
prove the performance of soft real-time tasks, analogouwshiat
has been done for CPU scheduling [8].

The slot expiration algorithm works as follows. Supposeaédhe
arek empty slots in the DSS and the horizorisThen the first slot
expires at timéexp=h—WCRT-Kif there are no I/O requests in the
DSS. At timeteyp, the scheduler chooses the slot with the earliest
micro-release time, equal to the micro-deadline of theiptessslot,
Pi,jk = 0ijk—1. If there is more than one such slot, the slot from
the stream with the earliest deadline is chosen. The scbethén
fills this slot with a request from another stream, and thigiest
is dispatched to the disk. The expiration time is resefetg =
h—WCRT- (k— 1), and it may be reset again as slots are filled
with requests to account for the actual number of empty slots

7.2 It's not all bad news

If a request arrives after its slot expires, the stream lesese
portion of its reserved utilization. However, in contrasour ear-
lier assumption that all requests must be queued up at thertieg
of the period, we now show that as long as requests arrivadefo
their micro-release times the scheduler guarantees thatdlots
never expire.

LEMMA 3. Empty slots do not expire until timezt p; jx =
&i,j k-1, the micro-release time of the request;R that fills the
slot.

PROOF By contradiction.

Assume that a slot has expired at titne p; j k.

In our implementation, when a slot is expired, there are o fu
slots in the DSS and the slot has the earliest micro-releasedf
any slot in the DSS, e.

VXY, 25 Pijk < Pxy,z

Suppose there ateslots in the DSS and is the horizon. By
our algorithmt = h— WCRT- k and by our assumption all micro-
release times of slots in the DSS should be in the intefvéal),
therefore

VX,y,2: h—WCRT-k < pj jk < Pxyz<h

Letk; be the number of slots from each streeimthe DSS, such
that 31! 1 ki = k. For a slot to be in the DSS, its micro-deadline
should also be less than or equal the horizon. So, hayistpts
in the interval(h— k- WCRT, h] means that this interval contaiks
intervals of length WCR]u;, which we can express as



WCRT

Viiki- G

<k-WCRT

which impliesVi : ki < k-u;. Therefore, we know that

ih < 'ilk.Ui

S, u <1, sowe have the inequality
n

k<k-$ uy<k
2

Thus we have the contradictid< k. [

Since slots do not expire until their micro-release timésa i
stream sends /O requests no later than their micro-reliass,
it is guaranteed to receive its full utilization. We provéstin the
following theorem.

THEOREM 4. If a stream of requests arrives such that each re-
quest Rj arrives no later thanp; j , then the utilization pis
guaranteed.

PROOF The only way a stream can get less than its reserved
utilization is if it has a slot expired. By Lemma 3 this canhappen
unless a request arrived after its micro-release pm&. [

Despite this good news, it is still the case that slots lefilled
after their micro-release time can impose extra overhehd.over-
head of accounting for the corresponding blocking time dfeasn
as well as the extra seeks imposed is quantifiable via an sisaly
similar to that in Theorem 1. However, we explain in the ned-s
tion how the overhead can be mitigated by heuristic teclesdbat
coalesce requests from outside the DSS when empty slotsare e
countered.

8. PERFORMANCE ENHANCEMENTS

Early deadline extension and EDF only help if there are éeottl
neck requests—requests from the stream with the earliagtide—
in the DSS. If the bottleneck stream has an empty slot in th8,DS
the scheduler services other streams while holding emptg &br
bottleneck requests. While extra seeks are inevitabletfeams
that send their requests late, when the bottleneck strearsing
less disk time than it reserved it will force the schedulehotd
empty slots until they expire. This prevents the schedulemf
extending the deadline, which leads to performance iswigirob-
lems.

In the case where a bottleneck stream has empty slots in the

DSS, we try to increase the contiguity of requests in the DES o
non-bottleneck streams. Our initial approach moves reégqueshe
DSS from each stream proportional to their utilization resgons.
However, only requests from the stream with the earliestliea

less than or equal the earliest deadline of the two streahis.dbes
not violate deadlines: slots are of the same size; swapp&m in
schedule does not affect any stream except those whosensres
swapped, and as long as both slots have micro-deadlinethkass
or equal to both streams’ deadlines, the same amount of witirk w
be done before each deadline with and without the swap.

9. EVALUATION

Our Fahrrad prototype is implemented as a loadable bloclcele
driver for the Linux 2.6.17 kernel. The driver sits on top ofun-
derlying disk device and exports a block device nafisy/ f ahrr ad.
All streams share the same underlying device. A user-len@l p
gram makes reservations viaieect | () call. Anfcntl () callis
used to associate an I/0 stream with a reservation.

All of our experimental data was collected on a Hitachi Déesks
DJINA-371350, which is a 13.%8 7200 RPM IDE drive with an
average seek time of 8.5 ms. In all experiments with more ¢imen
run, the variance is too small to be visible. Error bars aaevdr(but
invisible) for the first experiment and omitted for the renuer.

9.1 Sequential workloads

A key requirement is that our scheduler provide isolation be
tween request streams, so that each stream gets its resitizzd
tion independent of the behavior of other streams. Our figsée
iment shows that Fahrrad provides perfect isolation whewiged
with sequential workloads having many outstanding 1/Osac8i
there are always 1/Os available in the request queues, d&&hbr-
tends the DSS request horizon as soon as the bottlenecksteque
are serviced; request streams with small periods that thmisize
of the DSS do not affect the performance of other sessions.

The workload consists of four sequential streams with marty o
standing 1/0s. Each stream starts at a different locaticthewlisk,
forcing a seek between requests of different streams. Hezding
reserves 20% of the available disk time. Three of the strdwawe
2 second periods and the period of the fourth stream changes f
125 ms to 2 seconds. This workload is illustrative, but isneqt
resentative of actual applications, which do not genesaly their
period dynamically at runtime. However, this allows us tewihe
behavior of the scheduler over a range of conditions.

The experiment measured the utilization and throughputgeh
stream received for different values of the period of strdarhig-
ure 3(a) shows that each stream received 20% utilizatiotheys
had reserved. Figure 3(b) shows that each stream recenrmdjti
put based on its behavior, with streams 1-3 receiving egualigh-
put and stream 4 receiving throughput varying based on fisghe
(and therefore its overhead to seek back and forth from therot
streams each period).

It will not always be the case that all streams will have an in-
finite number of I/Os queued up. The next experiment examines
this case by looking at how the presence of a hard real-tirearst
with a small period affects the performance of other streiantise
system. The workload is the same as in the previous expetimen

must be in the DSS; the rest of the requests in the DSS can beexcept stream 4 is a hard real-time (HRT) stream that sendedh fi

chosen from other streams as long as all deadlines are m#te In

number of 1/Os in the beginning of each period and reservas di

example in Figure 2, the DSS can have 7 requests from stream Btime assuming worst-case execution time.

and none from stream C in the first DSS interval with the harizo
of 250 ms. In the next interval with the horizon of 500 ms, tH&D
will contain 3 requests from stream B and 4 requests fronastre
C; both streams will meet their deadlines.

To increase the contiguity of requests, non-bottleneckastis
trade slots in the DSS with slots outside the DSS to maxintige t
number of filled slots from one stream in the DSS. Two streaims a
allowed to swap slots as long as the micro-deadlines of tie afte

Figure 4(a) shows the utilization received by each streamags
1-3 receive 20% utilization as reserved, since they alwaye h
I/Os outstanding. The hard real-time stream uses much hess t
20% of the reserved utilization because it assumes absoburts-
case execution time when making its reservation. The redeiti-
lization of the HRT stream decreases as its period incredmes
cause more of the (fixed number of) HRT requests can be satdul
together and thereby overhead required to service the Hie@rat
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4: Performance of four sequential streams with fixed periodhageriod of the HRT stream changes. Each stream reser%esiz®
utilization. AFAP refers to sequential streams that queggiests as fast as possible. Results are the average ofslO run

decreases. As shown in Figure 4(b), the HRT stream recdives i over-reserves utilization and ends up with many empty skuist
required throughput—the same as the number of I/Os per déton s rarely possible to extend the deadline and we need to resyad
sends—so it does not need all of its reserved utilization. swapping to provide good performance and isolation. Evehif
Figure 4(b) shows that the throughput of streams 1-3 deereas case, we find very good isolation above periods of about 1¢2 se
somewhat in the presence of HRT stream with very small psriod ond, which is more than adequate for most I/0O-based apjgicat
Since the HRT stream uses much less disk time that it reserves Shorter periods are also feasible as long as adequate ibgfier
the scheduler creates empty slots to hold its reservatidongsas available.
possible. The HRT stream does not send more requests umtil th
next period, so there is no opportunity to extend its deadlim 9.2 Non-sequential workloads
this case, slot swapping helps, but with very small HRT msio Non-sequential workloads add additional seeks into thaest
the performance of the other streams drops by 20-30% dueeto th gireams. These are handled by charging the appropriaterstce
limited sequentiality achievable from such swapping. F&fTHpe- the seek, maintaining the isolation property of our schedul
riods greater than 500 ms, the performance of the othemstréa The next experiment shows the behavior of the four streamns fr
not affected by the HRT stream. the previous experiment with the addition of a best-efftméam
The previous two experiments shovyed the affect of twolexirem that sends random I/Os as fast as possible. Figure 5(a) shawvs
cases on the performance of streams in the system. The Best€a o tjlization of the HRT stream is less than its reservaliecause
most favorable for early deadline extension, which yielely\good its 1/Os take less than worst-case time. All unused disk time

isolation. The second case is the least favorable: the HRRarst cluding that reserved but unused by the HRT stream, is (ctiyde
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5: Performance of 4 sequential real-time streams and onecffest-stream as the period of the HRT stream changes. Eszdnstreserves
20% of disk time. AFAP refers to sequential streams that guegquests as fast as possible. Results are the averageurfslO r

donated to the best-effort stream. The throughput of atlastrs, 1
shown in Figure 5(b), drops a little because the streams aw@dm
with a random stream. This suggests that our seek billingetrasl
implemented is as yet imperfect; other streams are beingliged
somewhat for the misbehavior of the best-effort stream.eibe-
less, performance and isolation are still very good, esigavhen
the HRT period is greater than about 1 second.

The next experiment shows the behavior of semi-sequentians
in the presence of both an HRT stream with different periout a
a random best-effort stream. As above, the HRT stream, sirown
Figure 6(a), receives no more utilization than it can usel, te 02
remainder is made available to the best-effort stream. ifncése,
the throughput of each stream is determined by its I/O belnaivi 5
this case its Fjegree of. sequentiality, as desired. The M@e 0 0 5‘0 1‘00 1‘50 2‘00 250 300 350
degradation is proportional to the number of seeks and idyeas

0.6

0.4

Fraction of I/Os

period 150 ms
period 250 ms oo
perioq 500 ms -----

Lat

quantifiable off-line. This knowledge, together with a cdweri- atency [ms]

zation of the application behavior, would be used by the éraé 7: Cumulative distribution of request response times of tire ra
provide an appropriate utilization reservation for a giwsired dom HRT stream. The HRT stream reserves 50% of disk time, and
throughput. it runs with one random bursty stream on background. Eaeh lin

. . represents different period reservation for the HRT stream
9.3 Workloads with latency requirements

If a request stream sends 1/0Os according to its reservaitiés,
guaranteed to receive its reserved utilization and comyitetl/O . . . ) .
requests by the end of each period. In this case, I/O resjiitnes too late in the period are serviced in the next period. In tec
are bounded by the period of the request stream. The next ex-When an I/O stream fails to queue up its requests beforedts sl
periment examines how period reservation affects reqespbnse ~ €Xpire, its request response times are bounded by two jgeriod

times. The workload consists of one random hard real-tinf€T{H . .
stream and one best-effort stream that sends short bunrsteddm 9.4 Comparlson with a best-effort 1/O sched-

1/0s (maximum burst is 30 I/Os) at random times. The HRT strea uler

sends a fixed number of 1/Os in the beginning of each period and Using a variety of tricks, including large I/O buffers, Lixis

reserves 50% utilization assuming worst-case 1/0 exegttioe. often able to provide good real-time 1/O performance withany

The best-effort stream uses the remaining 50% of the disk.tim explicit real-time support. For example, we can run a videzualio
Figure 7 shows the cumulative distribution of request raspo player on Linux as long as we do not do much else. However,

times of the HRT stream for reservations with three difféari- in the presence of other workloads, I/O performance canadiegr

ods. Response times are generally shorter for smallergsedand seriously. The next experiment demonstrates this effécwing

they do not (usually) exceed the period of the stream. With th the same workload under Linux and Fahrrad.The workloadistans
smallest period (150 ms), the HRT process has 8 outliersi(jdea of the following streams: media 1 sends 400 sequential 1&D<dp
misses) out of 2000 requests, representing 0.4% of all ezguid/e second period and reserves 20% of the disk time, media 2 sends
attribute this to the non-real-time CPU scheduling of thekiaad 800 sequential 1/0s per 1 second period and reserves 40% of th
generator that causes it to send some I/Os late. Requeststikia disk time, transaction sends short bursts of random I/Osratam



60

50

40t

20

Received utilization [%]
8

T T
AFAP, run length 8 I/Os, period 2 sec —+—
AFAP, run length 32 I/Os, period 2 sec ---
AFAP, run length 128 I/Os, period 2 sec -+~
HRT, sequential, period changes -~

BE, random --

[ 4

© x

Kemimimamin B et S

1000 2000

Period of the HRT stream [ms]
(a) Utilization

1500

900

800

600

500

400

300

Throughput [IOs per sec]

200

100

AFAb, run length 8 1/Os, ﬁeriod 2sec —+—
AFAP, run length 32 I/Os, period 2 sec ---a----
AFAP, run length 128 I/Os, period 2 sec -+~

HRT, sequential, period changes --%:- |

BE, random --e--

8 3 . {3 {3 &

500 1000

1500
Period of the HRT stream [ms]

(b) /O rate

2000

6: Performance of 4 semi-sequential real-time streams andesteeffort stream as the period of the HRT stream changash &ream
reserves 20% of disk time. AFAP refers to sequential strahatxjueue requests as fast as possible. Results are tlhgewdrl0 runs.

1ran§a§tion — 1ran§a§tion —
media 1 -——-&--- media 1 -——-&---
1000 - media 2 - 7 1000 media 2 - 7
background --e-- background --e--
g 8 800
172} 12}
9] 9]
aQ aQ
8 & 600 - 1
=] =]
a a
< <
= S 400
< <
o o
[= [=
200 B 200 B
0 ! ! . i o 2= ¢ ¢ 9 POSOYeTD5 R
0 100 200 300 400 500 0 100 200 300 400 500
Time [sec] Time [sec]
(a) Linux (b) Fahrrad
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times and reserves 30% of disk time, and background stream us streams, such as YFQ [3] and other fair-queuing algoritténg7],
remaining 10% of disk time for random I/O requests. Hierarchical Disk Sharing [21], and Zygaria [20]. Othersdhblers
Figure 8 shows the throughput results during a 500 second in- have focused on sharing of bandwidth or I/O rate, includattety
terval. Linux fails to support the media 2 stream, providany scheduling [18].
average of about 600 I/Os per second with high variance.r&ahr Other schedulers support particular classes of real-tioae-g
meets both the utilization guarantees (not shown), anchtioeiggh- antees, such as schedulers targeting multimedia 1/O, elackC
put requirements of the 1/0 streams with extremely low vareéa wise [1]. They are effective in managing their designed Waatls,
Not only does Fahrrad honor its reservations and meet alicapp but they do not support the full range of hard real-time, seét-
tion performance requirements, its overall throughpueexrs that time and best-effort guarantees.
of Linux by about 200 1/Os per second. Cello [17], MARS [4], and the work by Wijayaratne and Redd9][1
support multiple classes of real-time and best-effort Waatls by
implementing a two-level hierarchy of schedulers. Shesi@}.[17]
concluded that time-based allocation is good for real-tinoek-
loads, such as video, and recommends using bandwidth alloca
tion for other, more general workloads. Fahrrad differsrfithese
schedulers by supporting the range of application requergmin
a single scheduling algorithm.
Molanoet al.[14] implemented a soft real-time filesystem in the

10. RELATED WORK

The spectrum of existing disk schedulers with QoS guarantee
suggests that there is an “inevitable” tradeoff betweervidiog
good guarantees and providing good performance. On one&ide
the spectrum are schedulers that try to provide a degreelafis
tion between streams, but no real-time guarantees. Sontesé t
schedulers have focused on fair resource sharing amongphault



RT-Mach kernel allowing for disk bandwidth reservationbeTap-
proach uses the same admission criteria as described imérhelg
but requires all requests scheduled for a single period sehaen-
tial to guarantee all deadlines. In order to achieve moreiefft
resource usage the scheduler trades off hard real-timefess
and fine granularity (short periods). Fahrrad provides §jrened
hard real-time guarantees without affecting resourceiadla for
other streams.

Several real-time scheduling algorithms [15, 5] aimed tt-op
mize performance while meeting real-time guarantees bybaom
ing seek-optimizing algorithms such as SCAN with EDF rémlet
scheduling. SCAN-EDF [15] does so by sorting 1/0 requests in
EDF order and re-ordering requests with the same deadling us
SCAN. GSR [5] creates feasible scan-groups representingfse
requests that can be executed while seeking in particulectitn.
Both algorithms focus on real-time scheduling of I/0 reqsi@gth
individual deadlines. Real workloads however do not uguat
quire reservation on per I/O basis. Fahrrad supports arpiteser-
vation granularities (periods), thus allowing more oppnities for
reordering of requests in workloads with larger periods ammte
efficient scheduling as a resullt.

The most similar system to Fahrrad is the scheduling frame-
work in DROPS [16], which supports hard real-time, soft real
time and best-effort guarantees. Like Fahrrad, DROPS allaw
bitrary reservation granularities, but reservations arehvough-
put. DROPS tries to optimize disk utilization by dividing abj
into mandatory and optional parts. Only mandatory requass
guaranteed and optional requests are executed if theracis Igift
from mandatory requests. Since mandatory part resergtos
made using worst-case assumptions, reservable throughlmu.

In contrast, Fahrrad is based on disk time utilization nestéwn,
which avoids the need to make worst-case assumptions fenvees
tions and thus allows more efficient disk resource resemati

Fahrrad’'s DSS is similar to the Dynamic Active Subset (DAS)
in DROPS, which is a subset of outstanding disk requestshwhic
can be sent to disk in any order without violating guarant®sS
uses Shortest Access Time First algorithm to dispatch =sgue
the disk. However, Reuthest al. [16] do not discuss how they
handle unqueued requests and the guarantees in the cafferefdi
arrival times of requests. Also, the admission control imestuling
framework in DROPS does not reserve the extra time needed to
account for non-preemptability of I/O requests.

Fahhrad does not exploit any knowledge about disk chaiacter
tics. An alternative approach that others have advocat2dl3,
16] is to take into account detailed knowledge about the, disk
layout of blocks on the disk platter, disk geometry, seelesand
rotational speed. Previous experience of one of the autifafss
paper has shown that it is time consuming to model the disk, be
cause every disk has different characteristics, and asult iets
not practical. This experience was a basis of our work toigma
disk scheduler that does not require detailed knowledgetabe
disk.

11. CONCLUSIONS

The Fahrrad disk I/O scheduler provides correct real-tichedul-
ing of a combination of hard and soft real-time I/O streamhimi
a single scheduler. It guarantees that an I/O stream wilioka
specified amount of utilization of the disk, with a specifiegt p
riod. A basic scheduling algorithm, which uses EDF intdgpal
correctly handles non-preemptible I/O requests. Addingraier-
ing mechanism—the DSS—to the algorithm allows the schedule
to obtain good performance by ordering requests to accoutiné
statefulness of disk 1/0 processing. The techniques foerimd

requests within the DSS preserve the scheduler’s corrextne

The amount of utilization reserved for a given request strea
must be “padded” with the utilization for at least one extiarst-
case request to meet utilization guarantees, and thatmpedth
three worst-case requests worth ensures that each stigsaouigh-
put expectation, from which the utilization reservatiordesived,
is isolated from the behavior of other streams.

We have implemented Fahrrad as a loadable block-devicerdriv
for the Linux 2.6.17 kernel. Our implementation includessio
of the features presented above including request quéneBSS,
micro-deadline adjustment, early deadline extensionsétdwap-
ping. We have not fully implemented the admission contrel re
quirements and do not yet bill entirely correctly for therexdeeks
imposed on a stream each period.

The experiments we have run using this implementation show
that the driver delivers excellent performance. The wtian-based
admission control allows us to reserve resources for a rahgp-
plications. The driver provides isolation even in the pnegeof
a hard real-time stream with a short period. The deadlinenext
sion, bottleneck scheduling, and slot swapping mechaniseld
throughput equivalent to, and occasionally better thaa,tthdi-
tional Linux (best-effort) disk driver.
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